Miniature Implantable Medical Devices

IEEE Phoenix Tech Conference and Expo
December 8, 2023

Andy Kelly
Director of Applications Engineering
Cirtec Medical
Miniature Implantable Medical Devices

1. Miniature Implantable Medical Devices
2. Enabling Technologies
3. Design Opportunities
4. Custom IC Design Techniques
5. MIMD Case Study
6. Conclusions
1. Miniature Implantable Medical Devices
2. Enabling Technologies
3. Design Opportunities
4. Custom IC Design Techniques
5. MIMD Case Study
6. Conclusions
Miniature Implantable Medical Devices

IMDs
Pacemakers/Defibrillators
Spinal Cord Stimulators
Drug Infusion Pumps
Chest/Abdomen
Long Leads
Invasive Surgery
\~ 15 to 50 cc

MIMDs
Cardiac Monitors
Peripheral Nerve Stimulators
Micro Infusion Pumps
Head/Neck/Limbs
Small Leads
Minimally Invasive
< 5 cc
Miniature Implantable Medical Devices

• **MIMD Examples**
 - Insertable Cardiac Monitor
 ![Reveal LINQ](https://www.medtronic.com/)
 - Leadless Pacemaker
 ![Abbott](https://www.cardiovascular.abbott/)
 - Peripheral Nerve Stimulator
 ![Nalu](https://nalumed.com/)
 - Vagus Nerve Stimulator
 ![Setpoint Medical](https://setpointmedical.com/)
Miniature Implantable Medical Devices

• Vagus Nerve Stimulator

- Device volume $\ll 5$cc

Small enough to implant at point of therapy

- Electrodes attached to nerve

- Leads routed to neck

- IMD implanted in chest
Miniature Implantable Medical Devices

1. Miniature Implantable Medical Devices
2. Enabling Technologies
3. Design Opportunities
4. Custom IC Design Techniques
5. MIMD Case Study
6. Conclusions
Enabling Technologies

• **Micro-Electro-Mechanical Systems (MEMS)**
 • Microscopic sensors, actuators & machines
 • Fabricated on silicon wafers
 • Semiconductor processes & equipment

Medical Examples

Pressure Sensors – Blood Pressure
Accelerometers – Position, Activity
Chemical Sensors – Glucose
Fluid Pumps – Drug Delivery
Enabling Technologies

- **Solid State Batteries (SSB)**
 - Functions like standard rechargeable Li-Ion battery
 - Fabricated on silicon wafers
 - Semiconductor processes & equipment
Enabling Technologies

- Integrated Passive Devices (IPD)
 - Resistors, capacitors, inductors
 - Fabricated on silicon wafers
 - Semiconductor processes & equipment

Device Types
- High Density Capacitors
- High Q Inductors
- Polysilicon Resistors
- Metal Interconnects
Enabling Technologies

- Chip-Scale Packaging (CSP)

28-pin CSP: 250x smaller than DIP
Enabling Technologies

- **Stacked Chip-Scale Packaging (SCSP)**
 - Multiple chips in one package
Miniature Implantable Medical Devices

1. Miniature Implantable Medical Devices
2. Enabling Technologies
3. Design Opportunities
4. Custom IC Design Techniques
5. MIMD Case Study
6. Conclusions
Design Opportunities

- Low/Small Temperature Range

- Military: (-55 to +125)
- Industrial: (-40 to +85)
- Commercial: (0 to +70)
- IMD: (+10 to +50)
- Post-Implant: (+35 to +40)
Design Opportunities

- **Low Frequency Requirements**
 - EEG/ECG bandwidth ~ 200Hz
 - Blood pressure bandwidth < 100Hz
 - Accelerometer bandwidth < 1KHz
 - Stimulation therapy < 10KHz
 - [5G Wireless > 50GHz]
Design Opportunities

- **Moderate Precision Requirements**
 - Stimulator DAC amplitude ~ 8-bits
 - ECG/EEG ADC resolution ~ 12-16 bits
 - Pressure sensor ADC resolution ~ 10-bits
 - Accelerometer ADC resolution ~ 10-bits
 - [Audio DAC ~ 24-32 bits]

 8-bits = 256 steps

 32-bits > 4 billion steps
Design Opportunities

- **Non-Volatile Memory (NVM)**
 - Included in most MCUs – or OTP in ASIC
 - Holds memory when power is removed
 - MCU/RAM can be disabled – most of the time
 - Calibration for analog circuits
 - Reduces analog performance requirements
Design Opportunities

- **Battery Recharge**
 - Required for most MIMDs
 - Recharge session used for communication
 - Communication used to calibrate circuits
 - Reduces absolute accuracy requirements
 - Reduces accumulation of timing errors
Miniature Implantable Medical Devices

1. Miniature Implantable Medical Devices
2. Enabling Technologies
3. Design Opportunities
4. Custom IC Design Techniques
5. MIMD Case Study
6. Conclusions
Custom IC Design Techniques

- **Application-Specific ICs (ASICs)**
 - Eliminate unnecessary features & functions
 - Optimize performance for single application
 - Optimize size & power for MEMS interfaces
 - Optimize interconnect for SCSP
 - Optimize overall integration
 - Optimize total power consumption
 - Enables battery size reduction

Customize design to minimize size & power
Custom IC Design Techniques

- Complex Power Management
 - Multiple supply domains
 - Switched-mode power supplies
 - Detailed enable/disable control
 - Digital clock gating
 - Energy harvesting

Example MIMD
4V Battery
10V Wireless antenna
Inductive buck for battery charging
Capacitive buck for 1.8V analog/digital
Linear regulator for 0.9V timekeeping
Inductive boost for 18V Stimulation

Effective power management minimizes power consumption
Custom IC Design Techniques

- Ultra-Low Power Circuit Design
 - Example: Ultra low power voltage reference

- Switched-Cap Architecture
- nA Supply Current
- Sample/Hold Output

Sub-Vt Bias

Switched-Cap Architecture
Custom IC Design Techniques

- **Smart Integration**
 - Assess all available components
 - Consider size, power, cost, schedule, risk
 - Partition design: only customize as needed
 - [Not maximum integration]
Miniature Implantable Medical Devices

1. Miniature Implantable Medical Devices
2. Enabling Technologies
3. Design Opportunities
4. Custom IC Design Techniques
5. MIMD Case Study
6. Conclusions
MIMD Case Study

- Vagus Nerve Stimulator
 - Programmable stimulation current
 - Wireless communication & recharge
 - Integrated power management & timekeeping
MIMD Case Study

- Vagus Nerve Stimulator

Volume < 1cc
Miniature Implantable Medical Devices

1. Miniature Implantable Medical Devices
2. Devices
3. Enabling Technologies
4. Design Opportunities
5. Custom IC Design Techniques
6. MIMD Case Study
7. Conclusions
Conclusions

• MIMDs are achievable by capitalizing on Enabling Technologies and exploiting Design Opportunities

• Custom IC Design using unique Design Techniques allows us to optimize the solution

• Smart Integration approach helps to reduce time, cost, & risk
Learn More

• **IEEE – Engineering in Medicine and Biology Society**
 • EMBS is the world’s largest international society of biomedical engineers.
 • Join the Phoenix chapter - https://www.embs.org/membership/

• **International Microelectronics and Packaging Society**
 • IMAPS is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging.
 • Attend the Medical Electronics Workshop - https://imaps.org/page/medical

• **The Center for Neurotechnology**
 • CNT is an Engineering Research Center funded by the National Science Foundation to create devices to restore the body's capabilities for sensation and movement.
 • Learn about the latest research - https://centerforneurotech.uw.edu/

• **Cirtec Medical**
 • Cirtec Medical’s Semiconductor group is a full-service provider of low-power mixed-signal ASICs specializing in miniaturized portable and implantable medical devices.
 • Join our team - https://cirtecmed.com/careers/
Thank You!

Andrew Kelly
Director of Applications Engineering
Cirtec Medical

andy.kelly@cirtecmed.com
linkedin.com/in/andy-kelly-az/