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Introduction - Rapid Diagnostic Devices

> Rapid diagnostic devices (RDTs) have a broad application set.
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Objective

> The need for quick and accurate interpretation of RDTs could be advanced via

machine learning techniques.
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Data Collection

> Smartphones offer a practical method for image collection, but user conditions will
vary in terms of model of phone, lighting conditions, orientation of images, etc.
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The Dataset

> For this project, | had access to a dataset of over 2,000 rapid COVID-19 RDTs

> The images were taken of RDT’s with a series of tests using serial dilution (10 levels)
of target antigen (Ag)
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The Dataset - Preprocessing

> Preprocessing was needed, first to crop out the relevant region, then to enhance the
contrast
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Convolutional Neural Network Model

> Using the PyTorch framework, | set up and trained from
scratch a convolutional neural network that was based on
the now famous AlexNet architecture
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Convolutional Neural Network Model

> This system allowed enough versatility to begin to tackle
this problem, while still being small enough to easily train
on my home GPU
— Optimizer: stochastic gradient decent with momentum
— Activation functions: Leaky ReLU (o = 0.05)
— Regularization: 15% randomized weight dropout




Classification Problem

> The problem was initially formatted as a classification
problem, with the final layer of the network predicting 1 of
12 classes
— Used cross-entropy loss function
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Classification Problem

> After 20 epochs, | was able to achieve 35% accuracy.
— Way better than randomly guessing 1 of 12 classes (8.3% for random guess)
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Classification Problem

> Classification doesn’t consider the proximity of one class to
another

> By altering the approach,
| hypothesized that the
outcomes could be
improved
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Regression Problem

> Reconfiguring the model to the regression format goes from
predicting which of the 12 classes is probable, to predicting
a single outcome in terms of reagent concentration
— Used mean-squared error loss function
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Regression Problem

> After 30 epochs achieved 46.8% accuracy and an MSE loss of
0.022

— ~35% of misclassified tests were 1 level off
— ~30% of misclassified tests were 2 levels off
— Model correctly predicted invalid tests in all but 1 case
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Regression Problem
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Digging into the Model

> We are looking at the first 16 filters in the first layer of the CNN.
— This gives an idea of what the features look like to the network
— The test lines are enhanced in this layer, which is what we want

The labels on the strips are also enhanced, which is not what we want
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Considerations

> The dataset was constructed to simulate real-world difficulties one

would encounter when having patients submit images with their
own smartphone

> Practical limitations of the project constrained the size of the
model that | could work with

— Was only able to work with batches of 4 images at a time
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Conclusions

> | showed that we can use CNN'’s to interpret smartphone images of
RDT's
— Under classification format, | achieved 35% accuracy after 20 epochs of training
— Under the regression format, | achieved 47% accuracy and an MSE loss of 0.022

> A system similar to this could be deployed by healthcare providers

to provide accurate quantification of RDT's

— This could reduce the resources needed to provide actionable information to
doctors and other healthcare providers

— This could be implemented in low-resource settings

UNIVERSITY of WASHINGTON



Next Steps

> | would start with a larger base network, such as ResNet

> Training on a cluster would allow for more sophisticated
optimizers, would allow larger batch sizes, which results in faster
training speeds

> More sophisticated image pre-processing would remove the
unnecessary noise of RDT labels and shadows, and reduce the total

image size, which could have a huge impact on training speed and
model accuracy
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Thank you

> dannylleon@gmail.com
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