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Overview )

Quick Stats
Edo offers a turn-key demand-side management platform for » Foundedin 2020
non-residential buildings that integrates building and grid = 1.8K+ buildings served
operations. = 89M+ sq ft covered

= 119K+ Equipment
Edo provides a customer-branded advanced energy » 600K+ Mapped BAS Points
efficiency and demand flexibility solution for utilities. This = 5K+ Utility meters

solution enables utilities to strengthen their customer
relationships and engages hard-to reach customers such as
schools. Edo’s mission is to enable a faster, more reliable,
and more equitable transition to zero-carbon energy.
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Main forces driving change in electric sector

Carbon intensity of electricity supply is decreasing, electrification of energy sectors
(heating/transportation/industrial).

% Electrification

>, EV adoption/ large scale charging

@ Charging fundamentally changing the timing and location of load patterns.

°/ . Increased supply of variable RE generation
/ \ As RE increases on systems, increased need for grid flexibility at the
— generation/transmission & distribution level.

Vv Increased frequency of extreme weather events

_O_ Decreased equator to pole temp gradient, reduced strength and stability of jet
ah stream & polar vortex, increased frequency of extreme weather and duration of

weather events.



What success looks like in a future energy sector

edo

Climate Crisis

The first wave of consequences from climate change are
here now. Without immediate action, these impacts will
escalate to a point of no return by 2030.

Affordability Crisis

Rising costs are culminating in an affordability crisis that is
unnecessary, unacceptable and limits the investment
needed to balance the natural and built environment.

Equity Crisis

Systemic inequity and racism are embedded in nearly
every aspect of our society, with those who have the least
poised to suffer the most from the crises we face.



Impact of Grid-Integration of Buildings

LOAD IMPACT

EXAMPLE MEASURE

EXAMPLE BENEFIT

A National Roadmap
for Grid-Interactive
Efficient Buildings

Efficiency

POWER

HOUR OF THE DAY

SUB-SECONDS 1O SECONDS

Building has an insulated,
tight envelope and an
efficient HVAC system to
reduce heating/cooling
energy needs

Building dims lighting
system by a preset amount
in response to grid signals
while maintaining occupant
visual comfort levels

Connected water heaters
pre-heat water during
off-peak periods in response
to grid signals

Batteries and inverters
autonomously modulate
power draw to help maintain
grid frequency or control
system voltage

Reduced costs of burning
fuel to satisfy energy
demand, and reduced
emissions associated with
lower fuel use

Reduced investment in
generation and transmission
capacity due to lower peak
demand

Reduced energy costs due
to shifting consumption to
cheaper hours of the day;
avoided curtailment of
renewables during off-peak
periods

Reduced ancillary services
costs, improved integration
of variable generation
resources (e.g., wind, solar)

Shed Load
P Office of ENERGY EFFICIENCY
ENERGY & RENEWABLE ENERGY
BUILDING TECHNOLOGIES OFFICE
Shift Load
Modulate
Generate

rOWER
DEMAND

:

HOUR OF THE DAY

Rooftop solar PV exports
electricity to the grid

Reduced T&D losses due

to on-site consumption;
avoided need for grid-scale
generation

US DOE National Roadmap for GEB'

Potential $100-200 billion annual energy
cost savings.

Potential 80 million metric tons of carbon
emissions avoided by 2030 — or 6% of
total power sector carbon emissions.

A reduction of 9-15% in peak loads can
reduce utility bills by 10-17%

1. Satchwell, Andrew, Piette, Mary Ann, Khandekar, Aditya, Granderson, Jessica, Frick, Natalie Mims, Hledik, Ryan, Faruqui, Ahmad, Lam, Long, Ross, Stephanie, Cohen, Jesse, Wang, Kitty, Urigwe, Daniela,
Delurey, Dan, Neukomm, Monica, and Nemtzow, David. 2021. "A National Roadmap for Grid-Interactive Efficient Buildings". United States. https://doi.org/10.2172/1784302. https://www.osti.gov/servlets/purl/1784302.



Demand Flexibility

“Building demand flexibility specifically represents
the capability of controls and end-uses that can be
used, typically in response to price changes or
direct signals, to provide benefits to buildings’
owners, occupants, and to the grid.”

1. Satchwell, Andrew, Piette, Mary Ann, Khandekar, Aditya, Granderson, Jessica, Frick, Natalie Mims, Hledik, Ryan, Faruqui, Ahmad, Lam, Long, Ross, Stephanie, Cohen, Jesse, Wang, Kitty, Urigwe, Daniela,
e ‘ @ Delurey, Dan, Neukomm, Monica, and Nemtzow, David. 2021. "A National Roadmap for Grid-Interactive Efficient Buildings". United States. https://doi.org/10.2172/1784302. 6
https://www.osti.gov/servlets/purl/1784302.



Grid-to-Building Control Topology
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Demand Optimization Measures edo

Available Measures Type Response Time Considerations
O Dim lights Shed Seconds Occupant comfort
@ Spfce' timperature Shift, Shed Minutes Occupant comfort, capacity based
SELpoIn on current loads
=[] Chilledwater | Shift, Shed, Efficiency Minutes May influence downstream systems
— temperature setpomt (e.g_’ fan Speeds)
Discharge Thermal Shift, Shed, Efficiency Minutes Forecast load to determine optimal
! Energy Storage (TES) charge/discharge
T Discharge Battery Energy Shift, Shed, Modulate Seconds Forecast load to determine optimal
Storage System (BESS) charge/discharge



Spokane EcoDistrict — Living Lab for Building to Grid Integration
I

"  Occupancy-driven ventilation @ Rooftop PV

°°°°° N «  259kW DC-tied to BESS
024 Se « Optimized for energy & capacity

NRRRR -« CO, sensors by zone
| p Battery Storage
«  660kW / 1320kWh
TMW inverter

:I'hermal Storage

Three 8,000 gal water tanks
187 ton-hrs

_e / » Five 626 gal phase change tanks

Networked Lighting
O Active dimming & schedules T

ﬁ CLT Construction

Net-zero carbon building
Less thermal inertia

?_FO% EV charging /

Coordinated charge/discharge

200-225 ton-hrs
1400 kWh thermal storage

e % All-Electric Central Plant

Air-source heat pump
Water-source heat recovery chiller
Electric boiler

w_ _ . il COLORADO SCHOOL OF P
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Demand Optimization as a Time Series Problem edo

Types of Forecasts Needed Maln Electrial Meter

Thermal load shifted
to nighttime period

240 - Demand reduction

¢ Weather through 50% load shift

and 50% load shed

—— MNo Measures
— — With Measures
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 Building Level
 Electricity demand
« Available demand flexibility

Electrical Demand
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Demand Limit - 200 kW—

° EqUipment Level 120 - - Reduce | iMaint.lam * Flt?lease -
« DF measure impact T
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ML Model Development Workflow
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Getting Data from Buildings

« Commonly access Building Automation System (BAS) using BACnet protocol or other common

loT protocols

« May have 1,000+ equipment reporting 10,000+ data points.

« Device and point names are often not descriptive, so use ML classification to group into device

and point classes

 Lacks description of system topology, which may limit purely data-driven approach

« Points are polled at differing times, so need to align data on uniform time stamps
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53.92308
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0.001385
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0.192462
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0.187846
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Model Selection edo

« Compare commonly used models for time series « Mean Average Error (MAE) is primary metric
forecasting
« Ordinary Least Squares (OLS) MAE (KW)
. . - OLS 4.85 + 0.79
 Gradient Boosting Decision Trees (GBDT) LightGBM 3781078
« LightGBM SVM 4.66 £ 0.73
MLP 4.3 + 0.89
* XGBoost XGBoost 3.82 0.6
« Support Vector Machines (SVM) Naive iéllse“ne 5.51+0.62
« Multi-layer Perceptron (MLP) “nsemble 3692 0.6/
« Others

model
—— LightGBM
— QLS
— SVM
— MLP
—— XGBoost
—— True reading

100

« Deep Learning

« Temporal Fusion Transformers *
* ARIMA a0
- Ensemble

70

« Hyperparameter tuning

60

Meter Reading (kW)

50

40

. iy

2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
Time
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Issues with Data

Spikes in MAE in particular training data are related to

- 24 weeks: Electrical meter reading errors
- 40 weeks: Student returning to educational classes
- 48 weeks: Model is first seeing a holiday period

Solutions:
 Limit the use of prior electrical meter data as a feature

« Human-in-the-loop to update models when
irregularities may occur

MAE (kW)
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Modified cross validation split

Data

:

Train Test

.

Train Test

:

Train Test

|

Train Test

MAE of 7-day forecasts over cross validation split

— oLs
—— LightGBM
—— SVR
— MLP

— XGBoost

10 20 30 40 50
Weeks of training data
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Predictions edo

« GBDT and pre-processing of data appear to perform well compared to other methods.
« Requires hyper-parameter tuning for best results.
« Similar findings by Miller et al..

Example of prediction for unseen data

model
100 —— LightGBM
—— True reading

90

| - W

70

60

Meter Reading (kW)

50

oy My MR Wy "

2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
Time

2. Miller, Clayton and Hao, Liu and Fu, Chun. 2022. “Gradient Boosting Machines and Careful Pre-Processing Work Best: ASHRAE Great Energy Predictor Ill Lessons Learned.
https://doi.org/10.48550/arxiv.2202.02898. https://arxiv.org/abs/2202.02898. 15



General Lessons Learned edc

Data and Features
 Building operation and data quality is constantly changing. Need human-in-the-loop to ensure quality.
« The ability to estimate the impact of occupancy on building operation is key for building energy.

« Each building type may have different set of features, so need flexibility in approach and domain
knowledge to facilitate feature reduction.

Modeling
 Evaluate the prediction accuracy requirements vs training efficiency for large-scale deployments.

« Combination of physics-based simulation and ML when domain knowledge is necessary or limited training
data is available.

« Ensemble models may improve performance over single models.
« Consider switching between models as length of training data or prediction time horizon changes.
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Questions?




