IEEE 1584-2018 NFPA 70E Arc Flash Consortium Friday January 27, 2023 IEEE Electrical Safety Conference Mike Brisbois # Mike Brisbois, PE Design Electrical Engineer – Professional Engineer Washington Electrical Safety Engineer – Lockheed Martin FAA Power Systems Engineer – Siemens, Sigma Six Solutions Puget Sound Naval Shipyard Bremerton - Navy # Agenda – Updates to the NFPA 70E NFPA 70E - What is it? New Section Article 360 'Safety-Related Requirements for Capacitors' PPE Personal Protection Equipment **Coordination Curves** Arc Flash labels IEEE 1584-2018 Incident Energy Calculations # Purpose of the NFPA 70E - Standard for Electrical Safety in the Workplace - Chapter 1: Safety Related Work Practices - Chapter 2: Safety Maintenance Requirements' - Chapter 3: Safety Requirements for Special Equipment # NFPA® (Second of the second Standard for Electrical Safety in the Workplace® Substitution **Engineering Controls** ### Annexes - D. Incident Energy and Arc Flash Boundary Calculation Methods - E. Electrical Safety Program - F. Risk Assessment - G. Lock out/Tag Out LOTO - H. PPE Personal Protective Equipment - I. Job Briefing and Job Safety Planning Checklist - J. Energized Work Permit - O. Safety Required Design Requirements - Q. Human Performance and Workplace Electrical Safety - R. Capacitors ### Definition - Electrical Safe Work Condition: A state in which an electrical conductor or circuit part has been disconnected from energized parts, locked/tagged in accordance with established standards, tested to verify the absence of voltage, and, if necessary, temporary grounded for personnel protection. - NEW Balaclava an arc rated head protective fabric that protects the neck and head expect for a small portion of the facial area. # PPE Personal Protection Equipment - Table 130.7 (C)(15)(c) Personal Protective Equipment (PPE) - Arc-Rated Clothing Minimum Arc Rating of 8 cal/cm² (33.5 J/cm²) Arc Rated long-sleeve Shirt and pants or arc-rated coveralls Arc Rated flash suit hood or arc-rated face shield and arc-rated balaclava Arc Rated jacket, parka, high-visibility apparel, rainwear, or hard hat liner (AN) = As Needed Hard Hat Safety glasses or safety googles (SR) = Selection required Hearing protection (ear canal inserts) Heavy duty leather glove, arc-rated gloves, or rubber insulating gloves with leather protectors (SR) Leather footwear # Energized work NFPA 70 sect. 110.16 Arc-Flash Hazard Warning Electrical equipment, such as switchboards, switchgear, panelboards, industrial control panels, meter socket enclosures, and motor control centers, that is in other than dwelling units, and is likely to require examination, adjustment, servicing, or maintenance while energized, shall be field or factory marked to warn qualified persons of potential electric arc flash hazards. The marking shall meet the requirements in 110.21(B) and shall be located so as to be clearly visible to qualified persons before examination, adjustment, servicing, or maintenance of the equipment. # Energized work NFPA 70 sect. 110.16 Arc-Flash Hazard Warning ### (B) Service Equipment. - In other than dwelling units, in addition to the requirements in 110.16(A), a permanent label shall be field or factory applied to service equipment rated 1200 amps or more. The label shall meet the requirements of 110.21(B) and contain the following information: - (1)Nominal system voltage - (2)Available fault current at the service overcurrent protective devices - (3)The clearing time of service overcurrent protective devices based on the available fault current at the service equipment - (4)The date the label was applied - Exception: Service equipment labeling shall not be required if an arc flash label is applied in accordance with acceptable industry practice. Informational Note No. 1: NFPA 70E -2018, Standard for Electrical Safety in the Workplace, provides guidance, such as determining severity of potential exposure, planning safe work practices, arc flash labeling, and selecting personal protective equipment. Informational Note No. 2: ANSI Z535.4-2011, *Product Safety Signs and Labels*, provides guidelines for the design of safety signs and labels for application to products. Informational Note No. 3: Acceptable industry practices for equipment labeling are described in *NFPA 70E*-2018, *Standard for Electrical Safety in the Workplace*. This standard provides specific criteria for developing arcflash labels for equipment that provides nominal system voltage, incident energy levels, arc-flash boundaries, minimum required levels of personal protective equipment, and so forth. # Arc Flash Warning/Danger Labels ### FLASH PROTECTION Flash Protection Boundary: 111 in Flash Hazard at 18 in Incident Energy: 24 cal/cm^2 Bolted Fault Current 8.50 kA ### **CONFIRM PPE WITH CURRENT NFPA 70E** Project: Date:November 6th, 2017 Warning: Changes in equipment settings or system configuration will invalidate the calculated values and required PPE ### SHOCK PROTECTION Shock Hazard when cover is removed Limited Approach Restricted Approach Glove Class: 208 VAC 42 in 12 in 00 Equipment ID:X206B-LP-1 # ADANGER # NO SAFE PPE EXISTS ENERGIZED WORK PROHIBITED ### FLASH PROTECTION Flash Hazard at 1 ft 6 in Min. Arc Rating: 54 cal/cm^2 Flash Protection Boundary: 15 ft 3 in Glove Class: 00 PPE Level Dangerous! Danger Label: ### SHOCK PROTECTION Shock Hazard when cover is removed Limited Approach Restricted Approach Prohibited Approach 1 in 70 of 297 Bus: BUS 480V LC1 Prot: BKR 480V-MAIN LC1-Ph Warning Labels 0-40 calories/cm2 – Danger +40 cal/cm2 - 1) Flash Boundary at 9'-2" - 2) Working Distance 18" - 3) Incident energy at working distance - 4) Bolted Fault (Short Circuit worst case) 8500A - 5) Note: Warning: Changes in the settings or system configuration will 'invalidate' the calculated values and required PPE # Single Line Diagram - Field information needed - Wire sizes - Wire lengths - Available Fault Current - Motor sizes, HP, voltage, ph - Panelboard size, ratings - Breaker Sizes, plug sizes Mfg., type, settings - Transformer size, voltage Impedance ZI%, kW # Field Data for Power Studies | Cable | From Bus | In/Out | Qty | Length | | Cable D | escription | Per Unit (100 MVA Base) | | | |-----------|----------|---------|-----|--------|------|------------|--------------|-------------------------|--------|--------| | Name | To Bus | Service | /Ph | Feet | Size | Cond. Type | Duct Type | Insul | R pu | jX pu | | | P-H54-1 | | | | | | | Zero: | 2.9835 | 4.2231 | | F P-H54-2 | P-H54-1 | In | 1 | 10 | 500 | Copper | Magnetic | Pos: | 0.1276 | 0.2023 | | | P-H54-2 | | | | | | | Zero: | 0.4019 | 0.4978 | | F P-H5D1 | MSWB5 | In | 2 | 10 | 750 | Aluminum | Non-Magnetic | Pos: | 0.0671 | 0.0592 | | | P-H5D1 | | | | | | | Zero: | 0.1066 | 0.1508 | ## IEEE 1584 Calculations vs. Table Method ### Arc Flash Evaluation IEEE 1584 | | Bus Name | Bus
kV | Bus
Bolted
Fault (kA) | Prot Dev
Bolted
Fault
(kA) | Prot Dev
Arcing
Fault
(kA) | Trip/
Delay
Time
(sec.) | Breaker
Opening
Time
(sec.) | Ground | Equip
Type | Gap
(mm) | i boundary | | | Required Protective
FR Clothing
Category | Label# | |-----|----------|-----------|-----------------------------|-------------------------------------|-------------------------------------|----------------------------------|--------------------------------------|--------|---------------|-------------|------------|----|----|--|--------| | 104 | P-L13A | 0.208 | 6.60 | 6.60 | 2.76 | 2 | 0.000 | Yes | PNL | 25 | 89 | 18 | 17 | Category 3 (*N3)
(*N9) | # 0098 | | 105 | P-L1D | 0.208 | 11.52 | 11.52 | 4.80 | 2 | 0.000 | Yes | PNL | 25 | 128 | 18 | 30 | Category 4 (*N9) | # 0098 | # Available Fault Current | Sir/Madam: | |--| | We are presently performing the power systems study for the The study includes the arc flash risk assessment, protective device coordination and short circuit analysis. In order to complete the study we need to know the following; including the size, Z% and available fault current for the PSE Utility transformer: | | SizekVA 480V sec (voltage primaryV) | | Phase3 | | Impedance Z% min max | | | | Available Fault CurrentA (min) 480V sec | | Available Fault CurrentA (max) 480V sec | | X/R 480V sec | | Fuse size | | Fuse manufacturer | | Fusetype | | Sincerely, | | | | Michael Brisbois | Table 6 Maximum short circuit current (in amps) for three-phase transformers, padmounted | Туре | Secondary
Voltage | KVA | R/X | Minimum
%Z | 3 Phase &/or L-G
Fault Current | |---------|---|-------|------|---------------|-----------------------------------| | 3-Phase | 208Y/120 | 45 | 0.8 | 1.65 | 7600 | | PM | | 112.5 | 0.3 | 1.65 | 19000 | | | | 150 | 0.3 | 1.55 | 26900 | | | | 225 | 0.2 | 2.15 | 29100 | | | | 300 | 0.3 | 2.10 | 39700 | | | | 500 | 0.2 | 2.30 | 60300 | | | | 750 | 0.1 | 5.30 | 39300 | | | | 1000 | 0.1 | 5.30 | 52400 | | | 480Y/277 45 0.8
112.5 0.3
150 0.3
225 0.2
300 0.3
500 0.2
750 0.1
1000 0.1
1500 0.1
2000 0.1 | 45 | 8.0 | 1.65 | 3300 | | | | 112.5 | 0.3 | 1.65 | 8200 | | | | 150 | 0.3 | 1.55 | 11600 | | | | 225 | 0.2 | 2.15 | 12600 | | | | 300 | 0.3 | 2.10 | 17200 | | | | 500 | 0.2 | 2.30 | 26100 | | | | 750 | 0.1 | 5.30 | 17000 | | | | 0.1 | 5.30 | 22700 | | | | | 1500 | 0.1 | 5.30 | 34000 | | | | 2000 | 0.1 | 5.30 | 45400 | | | | 2500 | 0.1 | 5.30 | 56700 | # NPFA 70E 130.5 (G) Incident Energy Analysis - The incident energy analysis shall be updated when changes occur in the electrical distribution system that could affect the results of the analysis. The incident energy analysis shall also be reviewed for accuracy at intervals not to exceed 5 years. - 205.2 Single Line Diagram. A Single Line Diagram, where provided for the electrical system, shall be maintained in a legible condition and shall be kept current. # 110.4 (D) Normal Operations - Normal Operation of electrical equipment shall be permitted where a normal operating condition exists. A normal operating condition exists when all of the following conditions are satisfied: - 1) The equipment is properly installed - 2) The equipment is properly maintained - 3) The equipment is used in accordance with instructions included in the listing and labeling and in accordance with manufacturer's instructions - 4) The equipment doors are closed and secured - 5) The equipment covers are in place and secured - 6) There is no evidence of impending failure # D.4.6 Electrical Configuration VCB = Vertical Conductors/electrodes inside a metal box enclosure VCBB = Vertical conductors/electrodes terminated in an insulating barrier inside a metal box HCB = Horizontal conductors/electrodes inside a metal box or enclosure VOA/HOA = Vertical/Horizontal conductors in open Air ### IEEE Std 1584™-2018 (Revision of IEEE Std 1584-2002, as amended by IEEE Std 1584a™-2004 and IEEE Std 1584b™-2011) ### IEEE Guide for Performing Arc-Flash Hazard Calculations Sponsor Petroleum and Chemical Industry Committee of the IEEE Industry Applications Society Approved 27 September 2018 **IEEE-SA Standards Board** ### 3.1 Definitions arc: A plasma cloud formed in a gap between two electrodes with sufficient potential difference. arc current: See: arcing fault current. arc duration: See: clearing time. arc flash: An electric arc event with thermal energy dissipated as radiant, convective, and conductive heat. NOTE—See Annex E for additional information.8 arc-flash boundary: A distance from a prospective arc source at which the incident energy is calculated to be 5.0 J/cm² (1.2 cal/cm²). arc-flash hazard: A dangerous condition associated with an electric arc likely to cause possible injury. arc-flash hazard calculation: The use of equations to compute the incident energy at a specific working distance and the arc-flash boundary. arcing fault current: A fault current flowing through an electrical arc plasma. Syn: arc current. available short-circuit current: At a given point in a circuit, the maximum current that the power system can deliver through a given circuit to any negligible-impedance short circuit applied at the given point, or at any other point that causes the highest current to flow through the given point. "Available short-circuit current" and "bolted fault current" are equivalent for a zero fault impedance. bolted fault: A short-circuit condition that assumes zero impedance exists at the point of the fault. circuit: A conductor or system of conductors through which an electric current flows. ### IEEE Std 1584-2018 IEEE Guide for Performing Arc-Flash Hazard Calculations ### 3.2 Acronyms and abbreviations ac alternating current CF correction factor dc direct current E.C. electrode configuration HCB horizontal conductors/electrodes inside a metal box/enclosure HOA horizontal conductors/electrodes in open air LV low voltage MCC motor control center MV medium voltage OA open air PDU power distribution unit PPE personal protective equipment TCC time current characteristic UPS uninterruptible power supplies VCB vertical conductors/electrodes inside a metal box/enclosure VCBB vertical conductors/electrodes terminated in an insulating barrier inside a metal box/ enclosure VOA vertical conductors/electrodes in open air ### 4.2 Range of model The following empirically derived model, based upon statistical analysis and curve-fitting programs as well as an understanding of electrical arc physics, is applicable for systems with the following parameter range: - Voltages in the range of 208 V to 15 000 V, three-phase (line-to-line) - Tests were performed in laboratory conditions using selected open-circuit voltages (V_{oc}). While the model utilizes V_{oc} , pre-fault voltage (system nominal voltage, utilization voltage, etc.) can be used for application of this model. - Frequency of 50 Hz or 60 Hz - Bolted fault current (rms symmetrical) - 208 V to 600 V: 500 A to 106 000 A - 601 V to 15 000 V: 200 A to 65 000 A - Gaps between conductors - 208 V to 600 V: 6.35 mm to 76.2 mm (0.25 in to 3 in) - 601 V to 15 000 V: 19.05 mm to 254 mm (0.75 in to 10 in) ### 4.5 Arcing current variation correction factor Calculate a second set of arc duration, using the reduced arcing current I_{arc_min} to determine if the arcing current variation has an effect on the operating time of protective devices and consequently incident energy. The arcing current variation applies for all system open-circuit voltages within the valid range of the model (208 V to 15000 V), but it is expected to have the most impact between 208 V and 600 V. To determine a lower bound of the average rms arcing current, use Equation (2) as follows and the coefficients provided in Table 2: $$I_{\text{arc min}} = I_{\text{arc}} \times (1 - 0.5 \times VarC_f) \tag{2}$$ $$VarC_f = k1V_{oc}^{6} + k2V_{oc}^{5} + k3V_{oc}^{4} + k4V_{oc}^{3} + k5V_{oc}^{2} + k6V_{oc} + k7$$ where VarC, is the arcing current variation correction factor I_{∞} is the final or intermediate rms arcing current(s) (kA) (see note) $I_{arc min}$ is a second rms arcing current reduced based on the variation correction factor (kA) V is the open-circuit voltage between 0.208 kV and 15.0 kV k1 to k7 are the coefficients provided in Table 2 Table 2—Coefficients for Equation (2) | E.C. | <i>k</i> 1 | k2 | k3 | k4 | k5 | k6 | k7 | |------|------------|---------------|-------------|------------|----------|----------|---------| | VCB | 0 | -0.0000014269 | 0.000083137 | -0.0019382 | 0.022366 | -0.12645 | 0.30226 | | VCBB | 1.138e-06 | -6.0287e-05 | 0.0012758 | -0.013778 | 0.080217 | -0.24066 | 0.33524 | | HCB | 0 | -3.097e-06 | 0.00016405 | -0.0033609 | 0.033308 | -0.16182 | 0.34627 | | VOA | 9.5606E-07 | -5.1543E-05 | 0.0011161 | -0.01242 | 0.075125 | -0.23584 | 0.33696 | | HOA | 0 | -3.1555e-06 | 0.0001682 | -0.0034607 | 0.034124 | -0.1599 | 0.34629 | NOTE—The correction factor $(1 - (0.5 \times VarC_f))$ is applied as follows: # IEEE Std 1584-2018 IEEE Guide for Performing Arc-Flash Hazard Calculations ### 4.11 Single-phase systems This model does not cover single-phase systems. Arc-flash incident energy testing for single-phase systems has not been researched with enough detail to determine a method for estimating the incident energy. Single-phase systems can be analyzed by using the single-phase bolted fault current to determine the single-phase arcing current (using the equations provided in 4.4 and 4.10). The voltage of the single-phase system (line-to-line, line-to-ground, center tap voltage, etc.) can be used to determine the arcing current. The arcing current can then be used to find the protective device opening time and incident energy by using the three-phase equations provided in this guide. The incident energy result is expected to be conservative. ### 4.12 DC systems Arc-flash incident energy calculation for dc systems is not part of this model. However, publication references (Ammerman et al. [B1], Das [B16], [B17], Doan [B25], Klement [B62]) provide some guidance for incident energy calculation. ### **Process** - Step 1: Collect the system and installation data - Step 2: Determine the system modes of operation (SCENARIOS) - Step 3: Determine the bolted fault currents - Step 4: Determine typical gap and enclosure size based upon system voltages and classes of equipment - Step 5: Determine the equipment electrode configuration - Step 6: Determine the working distances (18", 24", 36") - Step 7: Calculation of arcing current ~1/2 bolt faut - Step 8: Determine the arc duration (fuse, CB, 2 sec rule) - Step 9: Calculate the incident energy (e.g., 3.8 cal/cm²) - Step 10: Determine the arc-flash boundary for all equipment (e.g., AFB = 2'-6'') Table 9—Correlation between actual equipment and electrode configuration | | Electrode configuration in test | Electrode configuration in equipment | |------|---------------------------------|--------------------------------------| | VCB | | | | VCBB | Insulation Plates | | Table 9—Correlation between actual equipment and electrode configuration (continued) | | Electrode configuration in test | Electrode configuration in equipment | |-----|---------------------------------|--------------------------------------| | НСВ | | | | VOA | | | | НОА | | | ### N ### Table 130.5(G) Selection of Arc-Rated Clothing and Other PPE When the Incident Energy Analysis Method Is Used ### Incident energy exposures equal to 1.2 cal/cm² up to 12 cal/cm² Arc-rated clothing with an arc rating equal to or greater than the estimated incident energy^a Long-sleeve shirt and pants or coverall or arc flash suit (SR) Arc-rated face shield and arc-rated balaclava or arc flash suit hood (SR)b Arc-rated outerwear (e.g., jacket, parka, rainwear, hard hat liner) (AN) Heavy-duty leather gloves, arc-rated gloves, or rubber insulating gloves with leather protectors (SR)c Hard hat Safety glasses or safety goggles (SR) Hearing protection Leather footwear ### Incident energy exposures greater than 12 cal/cm² Arc-rated clothing with an arc rating equal to or greater than the estimated incident energy Long-sleeve shirt and pants or coverall or arc flash suit (SR) Arc-rated arc flash suit hood Arc-rated outerwear (e.g., jacket, parka, rainwear, hard hat liner) (AN) Arc-rated gloves or rubber insulating gloves with leather protectors (SR)c Hard hat Safety glasses or safety goggles (SR) Hearing protection Leather footwear SR: Selection of one in group is required. AN: As needed. ^aArc ratings can be for a single layer, such as an arc-rated shirt and pants or a coverall, or for an arc flash suit or a multi-layer system if tested as a combination consisting of an arc-rated shirt and pants, coverall, and arc flash suit. ^bFace shields with a wrap-around guarding to protect the face, chin, forehead, ears, and neck area are required by 130.7(C)(10)(c). Where the back of the head is inside the arc flash boundary, a balaclava or an arc flash hood shall be required for full head and neck protection. ^cRubber insulating gloves with leather protectors provide arc flash protection in addition to shock protection. # Arc Flash PPE Chart # Questions Mike Brisbois 708.668.5488 mike.brisbois@ieee.org