

NIDEC CORPORATION

es of Electric Vehicle EV and **Charging Standards in North America** Allen Huang, MS EE, Lead Charging Engineer, Nidec Industrial Solutions *September 23, 2022*

Types of Electric Vehicles – 3 Types

BEV Battery Electric Vehicles, or BEVs. Vehicles that are powered only from an electric battery.

Types of Electric Vehicles

PHEV Plugin Hybrid Electric Vehicle, Vehicles that are powered from an electric battery and an internal combustion engine.

Small Battery Pack

Types of Electric Vehicles

Hybrid EV, Vehicles that are powered from an electric battery and an internal combustion engine, but the battery is charged only charged by regenerative breaking.

Smallest Battery Pack

EV Powertrain

Power Conversion: Electric Motor

Charging Speed, Duration of charging in minutes or hours?

How fast to charge an EV?

- Battery Capacity (kWh)
- Charging Power of Charger (kW)
- Battery BMS receiving power or actual charging power (kW)

Battery Capacity or Size, Unit: kWh

Charging Power = min (Charger Power, Battery receiving Power)

Volume (V) = Cross Area x Length

Electric Charging power: Cross area -> P in kW Length -> Hours in h Battery Capacity: kWh

Time to charge: t = Volume / P

t = 50 kWh / 50 kW = 1 ht = 100 kWh / 200 kW = 0.5 ht = 42 kWh / 7 kW = 6 h

Thinking using a garden hose to fill a water tank:

Bigger the pipe, Shorter the time needed.

Types of Electric Charging – AC or DC charging

AC Charging

- Level 1 (L1): Voltage 110 120VAC; Current 16A, Charging power, <u>1.76 kW</u>
- ✤ Level 2 (L2): Voltage 208-240VAC; Current 30-40A, Charging power, <u>7.6 9.6 kW</u>
- Charger Connector J1772 for North America. Type 2 for EU. Electrical signal is the same, it differs only in shape.
- On Board Charger (OBC)
 - Convert AC power to DC power to charge battery
 - Bottleneck of EV charging
 - On the vehicle, Can't be too much weight
- Typical Household Grid Power
 - 125-200 A panel.
 - 40 A accounts of 20-30%

Safe EV Charger Level 2 | Smart Charging Station 8.8KW/40A, Level 2, ev Charger 100-250 Volt, with NEMA 14-50 Plugs, Cable Size 20 Feet (6.1M), Compatible...

7

DC Fast Charging

DC ChargingDC Voltage

AC DC

- Bypassing OBC Directly to Battery Pack
- Battery BMS and Voltage Platform
 - Battery Management System (BMS)
 - 480VDC and 800VDC
- DC Charging Power
 - Power = $V(v) \times I(A) kW$
 - Typical EV Charger 120-360 kW
- Major Charging Network
 - Tesla Supercharger Network
 - Electrify America
 - EVgo
 - ChargePoint
 - Greenlots
- APP PlugShare

* ICCU : Integrated Charging Control Unit

Rear Traction Motor

Tesla Connector

One Type, both for AC and DC

CCS1 (Combo Charge System)

1 North Am. 2 for EU only for DC

AC J-1772 Connector 250VAC/40A

CHAdeMO EV Connector Only for DC – phasing out

Charging Sites

V2G (Vehicle to Grid), V2H, V2L and V2X

What is V2G?

To send the stored energy back to grid, home, any other load.

How?

To use an inverter. From DC power to AC power.

Examples: Ford F-150 Lightning Truck

Nidec Corporation

A Leading Global Manufacturer of Electric Motors and Controls

Mr. Nagamori, Founder & CEO

Nidec Competes in *Everything That Spins and Moves*

INFORMATION TECHNOLOGY

PCs / Servers Data Center Cloud Smartphones Haptics / HMI Consumer Electronics Digital Recorders / Cameras...

POWER GENERATION

Electric Generators Nuclear Energy Renewable Energy (Solar, Wind, Hydro...) Battery Energy Storage Systems Grid Stability...

VEHICLES

Dryers Dishwashers Refrigerators Fans Air Conditioners...

ROBOTICS

Factory Automation Automated Guided Vehicles Power Assist Suits Personal Mobility Telepresence Robot Drones...

Automation Systems Conveyors Compressors Fans Pumps...

Nidec Global Footprint

Nidec Industrial Solutions: EV Charging Infrastructure

Robust, high-performance, dependable EVCI Equipment for the United States Designed, Built, and Serviced in the US

Jeffrey Lehman, PE Director, EV Charging Infrastructure

Nidec EVSE Portfolio: DC EV Charging

DirectPowerPS

Power Conversion Unit 50kW Grid Input **Battery Energy Storage** (optional)

Dispenser Up to 320kW Output Dynamic Power Sharing

DirectPower120

All-in-One EV Chargers Up to 360kW Output Dynamic Power Sharing

Ideal For:

- Electrical capacity constraints (facility or grid)
- Facility or fleet resilience
- Legacy corridor 50kW DCFC replace-in-place

Ideal For:

- Locations with no electrical capacity constraints \bullet
- Greenfield charging projects
- Corridor, fleet depot, multi-family, workplace:

DirectPower360

Minimum wait times, maximum load management flexibility

Q&A.

