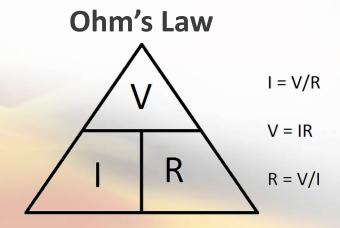
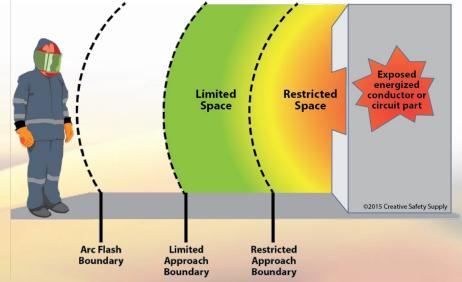


AMERICAN POWERSYSTEMS


Advancements in DC Shock and Arc Flash Coming to NFPA 70E and IEEE 1584 in the Future Based on Real-World Testing

Effects of Current Through the Body (time-dependent)

Effect	AC mA	DC mA	
Tingling Sensation Perceptible	1⁄10 - 1⁄2	1 - 2	1000 Will light 100-watt bulb 900 Severe burns
Involuntary Reflex (Let-go current)	1⁄2 - 5	2 - 30	300 200 Breathing stops
Possible Tetany (Unable to Let-go)	5 - 400	30 - 200	100 90
Possible Respiratory Arrest (Paralyzed Diaphragm)	30 - 200	170 - 200	60 30 20 Muscle contraction
Ventricular Fibrillation	50 - 200	200 - 500	10 Cannot let go 5 GFCI will trip
Heart Failure	500+	500+	2 Mild shock Threshold of sensation Milliamperes
Internal Organs Burn	1500+	1500+	


Current Through the Body Calculation

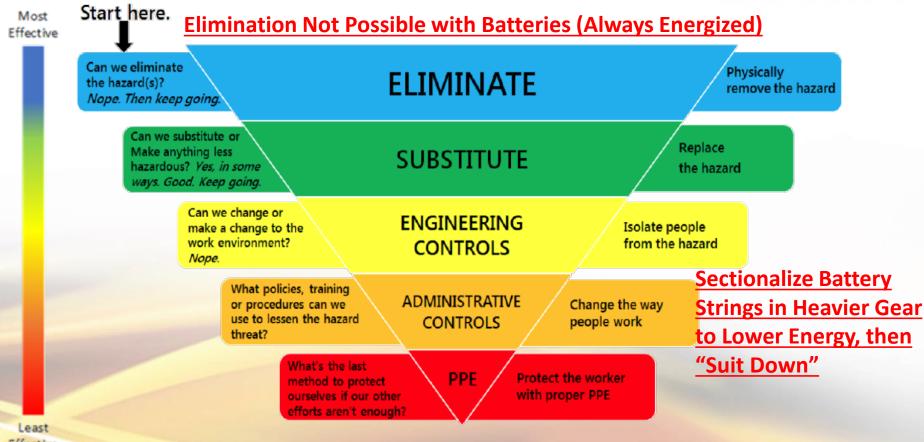
- equivalent human Body Resistance Varies Greatly
 - Average Human Dry Skin R \approx 20,000 Ω
 - Average Human Wet Skin R \approx 1,250 Ω
 - Human Sweaty Skin R as low as 500 Ω (Worst-Case w/o Wounds?)
 - Also Varies Arm-to-Arm vs Arm-to-Foot
 - Worst Cases for the Heart are Arm-to- Arm or Left Arm Foot
- Sample Calculations:
 - 120 VAC rms
 - Dry Skin: I ≈ 6 mA (tingle & let-go)
 - Wet Skin: I ≈ 100 mA (might be deadly)
 - 240 VDC
 - Dry Skin: I ≈ 12 mA (tingle & let-go)
 - Wet Skin: I ≈ 190 mA (hard to let go)

Shock and Arc-Flash/Blast Boundaries

- Restricted Approach Boundary: Shock Protection Required
 Reserved for Qualified Persons Only
- Limited Approach Boundary: Qualified vs Unqualified/Escorted
- Arc Flash Boundary: Arc Flash Protection Required
 - Distance at Which Incident Energy Causes 2nd-Degree Burn (1.2 cal/cm²)

DC Shock Risk Table

- Determine the Boundaries from Table 16 of the Safety Policy
 - Tables Derived From NFPA 70E-2021 Article 130


This will be going back to 100 VDC in NFPA 70E-2024	System Voltage	Limited Approach Boundary for Exposed Fixed Circuit Part	Restricted Approach Boundary	
	0 → 50 V (12, 24, 48 VDC)	not specified		
	51 – 300 V (125, 250 VDC)	3'6"	Avoid Contact	
	301 – 1,000 VDC (med-large UPS)	30	1'	

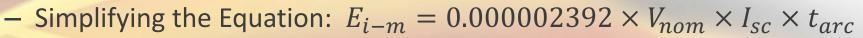
Arc-Flash PPE Categories (From NFPA 70E Article 130)

- Arc Flash Boundary: ≤1.2 cal/cm², 2nd degree burn threshold
 - Minimum required to work on live voltages: Natural fiber (cotton, wool, rayon) clothes
 - Long sleeves required to reach into battery/electrical cabinets
- Arc Flash PPE Category (was HRC) 1: 4 cal/cm², ATPV (Arc Thermal Performance Value)
- Arc Flash PPE Category 2: 8 cal/cm²
 PPE Category "2+": 12 cal/cm²
- Arc Flash PPE Category 3: 25 cal/cm²
- Arc Flash PPE Category 4: 40 cal/cm²

Another Way of Looking at Electrical Safety

Effective

DC Arc-Flash Risk Analysis


 NFPA 70E Allows Arc-Flash Analysis by Tables in Article 130 <u>or</u> by Annex D.5 Calculations (see Next Pages), but Not Both to try to Get the "Best" Result

Nominal DC Voltage	Fault Current	Arc-Flash Boundary	Risk Category	
0 - 10 <mark>0</mark> V	Any	N/A	N/A	
	<4 kA	3'	2 - (8 cal/cm ²)	
100 - 250 🗸	≥4 kA and <7 kA	4'	2 - (8 cal/cm ²)	
	≥7 kA and <15 kA	6'	3 - (25 cal/cm ²)	
	<1.5 kA	3'	2 - (8 cal/cm ²)	
250 - 600V	≥1.5 kA and <3 kA	4'	2 - (8 cal/cm ²)	
230-0000	≥3 kA and <7 kA	6'	3 - (25 cal/cm ²)	
	≥7 kA and <10 kA	8'	4 - (40 cal/cm ²)	

This will be going up to 150 V in NFPA 70E-2024

How DC Arc-Flash cal/cm² is Calculated per NFPA 70E, and BPA & Hydro Quebec Studies

- Formula from NFPA 70E: $E_{i-m} = 0.01 \times V_{nom} \times \frac{I_{sc}}{2} \times \frac{t_{arc}}{d^2}$
 - *d* is usually defined as 18", but in cm (45.72)
 - Based on NFPA 70E, + BPA & Hydro Quebec studies, max t_{arc} =
 - 0.025 s for most breakers (unless known otherwise), when applicable
 - 0.326 s ≤ 100 V_{dc}
 - 100 V_{dc} < 0.715 s < 150 V_{dc}
 - $150 V_{dc} \le 1.37 s < 270 V_{dc}$
 - \geq 270 V_{dc} = 2 seconds

How Arc-Flash Boundary is Calculated per NFPA 70E, and BPA & Hydro Quebec Studies

- Algebraically Rework Formula: $d(cm) = \sqrt{\frac{0.01 \times V_{nom} \times I_{sc} \times t_{arc}}{2 \times E_{i-m}}}$
 - The incident Energy (E_{i-m}) to set the arc-flash boundary is 1.2 cal/cm²
 - Based on NFPA 70E, + BPA & Hydro Quebec studies, max t_{arc} =
 - 0.025 s for most breakers (unless known otherwise), when applicable
 - 0.326 s ≤ 100 V_{dc}
 - 100 V_{dc} < 0.715 s < 150 V_{dc}
 - $150 V_{dc} \le 1.37 s < 270 V_{dc}$
 - \geq 270 V_{dc} = 2 seconds

Historie Barrier

- Simplifying the Equation: $d(in) = \sqrt{0.0006458 \times V_{nom} \times I_{sc} \times t_{arc}}$

Sample DC Arc-Flash Max Power Method Calculations

Battery Model	VDC	Cat	Arc-Flash Boundary	Short Circuit Amps	cal/cm ² @18"
MCTII-4000	2	N/A	3		0.04
	24		12	26,653	0.5
	48		16		1.0
	2		2		0.01
KCR-15	120	1	20	7,407	1.5
HR5500ET	12		3		0.04
	120	N/A	16	4,786	1.0
	240	1	32		3.8
	480	2+	54		11.0
AVR125-33	2	N/A	2		0.02
	48		11		0.4
	120	1	25 11,131		2.3
	240	2+	49		8.8
	480	4	83		25.6

Kinectrics 2007 Bruce Power Study BrucePower

- Report No. K-012623-RA-0002-R00
- 125 and 260 VDC Systems
- Incident Energy Measured at Various Distances, but not 18"
- Showed Max Power Method Seriously Overestimated Incident Energy

BPA Study

- IEEE PES General Meeting 2018, paper 8586181
- 1,300 Ah nominal 125 VDC (133 V Float) Lead-Acid Battery
 - Listed Bolted Fault Short Circuit Current of 11,000 A
- 60 Tests
- Maximum Arc Flash Sustain Time was 0.715 seconds
 - Ranged from 0.004 s up to 0.715 seconds
- Maximum Arc Flash Energy was 0.9 cal/cm² at 18"
 - Ranged from unmeasurable low up to 0.9
 - Below 1.2 cal/cm² Level Where Special Clothing Required
 - NFPA 70E Annex D.5 Max Power Method Predicted 10.3 cal/cm²
- Measured Max Arc Fault Current Ranged from 1,923-7,850 A

Hydro Quebec First Study Q Hydro Québec

- IEEE IAS 2020 Electrical Safety Workshop (ESW), paper 14
- 69 Tests, both "Arc in a Box" and Open Air, at 105, 144, 260, and 520 VDC

V _{nom} (V)	V _{arc} (V)	I _{sc} (A)	I _{arc-} peak (A)	t (s)	18" E _{measured} (cal/cm ²)	18" E _{Ammerman} -iterative (cal/cm ²)	18" E _{Doan-} MaxPower-2s (cal/cm ²)	18" E _{MaxPower-} tvary (cal/cm ²)
105	59-65	7,000	2,900-4,000	0.04-0.33	0.02-0.24	0.8	3.5	0.6
144	78-124	17,000	900-8,000	0.02-0.49	0.005-1.7	3.0	11.7	4.2
260	112-132	20,000	8,600-10,900	0.75-1.37	6.0-10.7	12.0	24.9	17.0
520	181-184	20,000	11,000	2+	39.0-44.0	45	49.8	49.8

What's Next?

- NFPA 70E-2027 to have New Formula/Method for DC Arc Flash Calculation Based on the Testing Shown in the Previous Two Slides; + 2022 Additional Testing done by Hydro Quebec (to be published in 2023 for IEEE IAS ESW), and 2022 Testing done by C&C Power on a UPS Battery Cabinet (to be published in 2023 for Battcon)
- IEEE 1584 Will Get Upgraded in the Next Edition with the Same Types of Calculations
- Both of These Changes Will Allow Canned Arc-Flash Programs (like ETAP, etc.) to Greatly Improve Their DC Arc Flash Portions